Cancer Imaging 2010
Role of Magnetic Resonance Imaging

Marilyn J. Siegel, M.D.
Mallinckrodt Institute of Radiology
Washington University School of Medicine
St. Louis, MO

And

Visiting Scientist, AFIP, Washington DC
Cancer Imaging 2010
Goals of this Presentation

• Review principles of functional MRI
• Update clinical utility in clinical trials in-
 – Predicting outcome
 – Predicting response to therapy
• Describe other emerging imaging tools
Cancer Imaging: Facts 2010

• Tumor shrinkage (RECIST/WHO) is still standard end point for response assessment
• Tumor dimensions lag behind biologic and molecular changes in responders
• Functional MRI offers more potential as predictor of therapy outcome and response
 – most use is still in clinical trials
Which MRI Studies are Functional?

• Functional studies
 – Measure physiology
 – Diffusion weighted imaging (DW-MRI)
 – Dynamic contrast-enhanced (DCE-MRI)

• Metabolism
 – MR spectroscopy--used more for tumor characterization, not response assessment
Dynamic Contrast Enhanced (DCE) MRI

- Imaging modality for measuring the physiology of tumor microcirculation, including hypoxia and angiogenesis

- Based on changes in signal intensity following injection of a contrast medium (Gadolinium)
Methodology DCE-MRI

• Contrast injected
• Sequential images obtained during wash-in & wash-out
• Imaging reflects microvascular changes in tumor
DCE-MRI: Quantitative Analysis

• Primary end points are:
 — Time vs. signal intensity curve (estimate of perfusion, semi-quantitative, non-physiological)
 — Volume transfer constant, K_{trans}
 (physiological, measure of exchange in plasma and extracellular extravascular space)

\[K_{ep} = \frac{K_{trans}}{V_e} \]
- Cancer shows rapid & higher enhancement
- Cancers are leaky, have increased permeability (*K*_{trans})
Clinical Applications for DCE-MRI

• Detection of many types of tumors including breast, cervical, osteosarcoma, bladder, rectal
• Tumor staging
• Monitoring response to treatment
 – Conventional treatments (chemotherapy/RT)
 – Novel biological treatments specifically antiangiogenic/vascular targeting drugs
• Predicting outcome
DCE-MRI Predictor of Outcome
What do we know?

• In general, cancers with high baseline enhancement or permeability (K_{trans}) are associated with better tumor regression

• Attributed to better perfused tumors having less hypoxia-related radioresistance

• Used in cervical, rectal, hepatocellular cancers

Hayes et al. NMR Biomed 2002; 15:154
DCE-MRI: Predictor of Outcome
Is it reproducible and valid?

• In cervical cancer

• High enhancement levels predict response to radiation therapy (RT) (Cooper 2001)

• High enhancement levels predict response to radiotherapy and also correlate with intratumoral O₂ levels (Loncaster et al, Int J Radiat Oncol Biol Phys 2002)
Outcome Predictor: Cervical Cancer

- Kaplan-Meier plot: MR enhancement predicted outcome
- Relationship between flow amplitude & tumor O₂ levels

Outcome Predictor: Rectal Cancer Reproducibility and Validation

- Advanced cancers (T3/T4)
- *High baseline permeability* (Ktrans) correlates with response to CRT (Dzik- Jurasz Lancet 2002; George 2001 Br J Surg)
- And also correlates with reduction in microvessel blood flow (MVD) (Lussanet Rad Oncol 2005)
- MVD is anatomic index of tumor vessel density
Outcome: Rectal Cancer

- High permeability (K_{trans}) correlates with survival

Next: DCE-MRI Monitoring Treatment Response--Does it work?

- *Early decrease in signal intensity* (within one week) predicts response to chemotherapy in bladder cancer (Barentsz, Radiology 1998)
- *Early decrease in permeability/k-trans* predicts response to CRT in cervical and hepatocellular cancers (Yuh et al, Invest Radiol 2009; Zhu A JCO 2009)
DCE-MRI: Bladder Cancer

• Responders show early decrease in signal intensity and slope of curve

Barentz Radiol 1998; 207:791
Positive tumor response
96% drop in K-Trans before tumor shrinkage

Baseline, 14 days and 6 points during 1st 3 cycles of Sunitinib
Significant decrease in Ktrans with PR or SD compared with patients with PD (average decrease 38%)

Zhu A, Sahani D et al. JCO 2009
DCE-MRI: Monitoring Antiangiogenic Therapy

- Phase I study PTK/ZK (anti-VEGF inhibitor)
 - colorectal liver metastases (n=26)
 - responders showed reduced blood flow & k-trans in a dose-dependent manner early in therapy (26-33 hrs) (Morgan 2003, 2004)
 - DCE-MRI biomarker for angiogenesis inhibition

Morgan, JCO 2003; 21:3955
DCE-MRI Benefits

- Can determine tumor response to chemotherapy, radiation and anti-angiogenic therapies
- Can potentially predict if a patient will respond to a treatment
- Can predict response before tumor shrinkage
- Correlates with histological assessments of tumor neovascularization such as microvessel density and VEGF pathways
DCE-MRI Limitations

- Standardized acquisition pulse sequences and analysis techniques are absent
- There are only small studies assessing reproducibility (test/retest)
- Software not commercially available
The Competition--CT Perfusion (CTp)?

CONVENIENT

- Available technique
- High spatial resolution
- High inter-tester reproducibility ($r=0.90-0.94$)
- Software is commercially available

Miles KA. Acad Radiol 2000;7:840–50

Detection Staging Monitoring
Perfusion CT (CTp)

- Measure of tumor microcirculation
- Simple compartmental model. Shows arterial, $a(t)$, tissue, $c(t)$, and venous, $v(t)$, time enhancement curves
CTp Technique
Quantitative Parameters

- BF = Blood flow
- BV = Blood volume
- MTT = Mean transit time
- PS = Permeability surface

Parameters dependent on mathematic modeling
What do we know?

- Limited information
- Rectal cancers with high baseline flow and volume show good response (Bellomi Radiology 2007, Sahani 2005)
- Attributed to better perfused tumors having less hypoxia-related radioresistance (like MR)
Can CTp Predict Therapeutic Response?

• There are more data (clinical trials)
 – liver, lung, rectum, pancreas
• Early decrease in blood flow, volume and permeability/k-trans but increase in mean transit time values correlated with response to therapy
Lung Cancer Response to CRT

- Reduced blood volume correlates with response--precedes change in tumor size
CTp: Monitoring Antiangiogenic Response
Hepatocellular Carcinoma

Drop in Blood Flow
Drop in Blood Volume
Drop by 76%
Favorable Response

Zhu et al. The Oncologist 2008; 13: 120
Sarcoma: Antiangiogenic therapy

Reduction in blood volume and increase in mean transit time correlated with response

Pre-Avastin

Post-Avastin

BF

MTT

24.3 ml/100g/min

7.9 sec

13.9 ml/100g/min

13.9 sec
Monitoring Antiangiogenic (Avastin) Response in Rectal Cancer

Monitoring Antiangiogenic (Avastin) Response in Rectal Cancer: CTp changes

CTp Validation and Reproducibility

<table>
<thead>
<tr>
<th>Clinical Application</th>
<th>Author (Journal/Year)</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>Ma et al (BMC Cancer, 2008)</td>
<td>BF, BV and PS values of peripheral lung cancer correlated positively with MVD</td>
</tr>
<tr>
<td>Liver</td>
<td>Sahani et al (Radiology 2007)</td>
<td>Reproducibility of BF, BV, PS and MTT values with high correlation and variability of 4% in HCC</td>
</tr>
<tr>
<td>Pancreas</td>
<td>d'Assignies et al (Radiology 2008)</td>
<td>BF values of pancreatic endocrine tumors correlated well with MVD</td>
</tr>
<tr>
<td>Colon & Rectum</td>
<td>Goh et al (Am J Roentgenol 2006)</td>
<td>Quantitative perfusion measurements are reproducible in colorectal cancer</td>
</tr>
</tbody>
</table>

Chan NG et al. CTp JCAT 2009
CTp Challenges

- Limited sample volume (2-4 cm)
 - Choice of location for investigation critical
- Patient motion can impact perfusion values
CTp vs. DCE-MRI

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CTp</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>2-4 cm</td>
<td>Entire organ</td>
</tr>
<tr>
<td>Computation</td>
<td>Simpler (linear relationship)</td>
<td>Complex</td>
</tr>
<tr>
<td>Parameters</td>
<td>Flow, volume, transit, permeability</td>
<td>K trans (permeability)</td>
</tr>
<tr>
<td>Limitations</td>
<td>Motion Reproducibility</td>
<td>Motion Reproducibility</td>
</tr>
</tbody>
</table>
Functional MR Imaging
Diffusion-Weighted Imaging (DWI)

• Evaluates motion (diffusion) of water molecules
• Amount of diffusion is quantified by the apparent diffusion coefficient (ADC)
• Cancer tends to have more restricted diffusion than normal tissue (lower ADC)
• Does not require contrast
Restricted Diffusion in Cancer

- Increased cellularity and reduced extracellular space = restricted diffusion

Cancer Normal tissue
Prostate Cancer-ADC Map

- DWI: Cancer brighter than normal
 - Reflects restricted water motion

![Image of Prostate Cancer-ADC Map]

Normal tissue
ADC 1.3 x 10^{-3} \text{ mm}^2/\text{s}

Tumor
ADC 0.75 x 10^{-3} \text{ mm}^2/\text{s}
Basis of DW MRI in Monitoring Response

• With successful treatment, changes in cell density resulting from necrosis or apoptotic processes lead to increases in tumor H$_2$O diffusion and increase in ADC
DWI-MRI as Outcome Predictor
Does it work?

• High pretreatment ADC values are seen in necrotic tumors which are frequently hypoxic, acidotic, poorly perfused with low sensitivity to chemotherapy or RT

• Rectal, hepatocellular cancer
Outcome Predictor: Rectal Cancer

- N=20, CRT
- Pretreatment ADC values inversely correlated with percent reduction tumor size (p<.005)

Pearson r = -0.73 (p = 0.008)

Change in tumor size as percentage of original size
Outcome Predictor: Liver Metastases in Colorectal Cancer

- Liver metastases ($n = 20$)-DW MRI pre chemotherapy
- High baseline ADCs predicted poor response to therapy

Can ADC Predict Response to Therapy?

- *Early increase in ADC value* after starting therapy (1-2 wks) was *surrogate biomarker of response*

- *Change in ADC occurs before change in size*
 - Kamel IR JVIR (2006) 17: 505

- *ADC correlates with necrosis in rabbit model*
Monitoring Therapeutic Response
Rectal Cancer

- Responders show higher pre-treatment & early increase in post-therapy ADC values (p<.005-0.0001)
 - (Thielmann 2004, Kamel 2006), Yankeelov 2007; Eccles 2009)
- Preceded changes in WHO/RECIST criteria
- Conclusion: ADC can predict responders
Liver Cancer (HCC, cholangioca, mets): Monitoring Response to Radiotherapy

- DW MRI at 1 and 2 weeks and 1 month (n=11)
- *Early increase in ADC correlates with tumor response, whereas RECIST did not (p<.005)*

Eccles Acta Oncologica 2009; 48:1034
DWI-MRI Limitations

• DWI-MRI processing technique to predict outcome and response, BUT
• Infection, abscess may have impaired diffusion
• Lack of standards for measurements
 – Best gradient (b value) unknown
What else is new?
MR Elastography (MRE)

- Noninvasive test that quantifies tissue stiffness
- Based on generation of mechanical vibrations in tissues and processing software to create images
- Currently used for detection & characterization
- Premise is that stiffness of cancer is greater than that of normal tissues or benign tumors
MRE: Obtaining the Image

• Mechanical driver device is placed on the patient’s body to generate shear waves (60Hz)

MRE: Resulting images are displayed as wave maps

- Short wave lengths

- Stiffness < 2.9 kPa

Taouli AJR 2009; 193; 14-27
MRE in Liver Tumors

- N=44 tumors
- Stiffness of malignant tumors > benign tumors, fibrotic liver, and normal liver ($p < 0.001$)
- MRE evaluates stiffness or shear forces

Venkatesh, AJR 2008;190:1534
MRE: Focal Liver Masses

Adenoma

stiffness value = 3.1 kPa
normal liver = 2.4 kPa

HCC

stiffness value = 10.8 kPa

Venkatesh, SK. et al. AJR. 2008;190:1534-1540
Alternative is US elastography

- Measures tissue response to stress & displays information as a color scan
- ‘Stiff’ structures (tumors) displayed in blue
- Soft tissues displayed in red, green
- Stiffness calculated
Soft liver parenchyma (red–green) contrasts with hard intercostal muscles (blue) (mean speed 105.31)

Hard liver parenchyma (blue) contrasts with surrounding soft tissues (red–green) (mean speed 227.26)

Alternative: US Elastography

Saftoiu AJR 2007 189:W232-233
Lymph Node

Endoscopic US elastography--malignant mediastinal node in a patient with esophageal carcinoma
Hard tissue (tumor) is blue. Normal soft tissue is red–green
Quantitative Analysis
Elastography coefficients

Strain index > 4 is predictor of thyroid cancer ($P < .001$)
Why is Functional MRI a Good Biomarker and also CT?

• Provides a precise (quantitative) indication of treatment response
• Noninvasive
• Can be used before or very early in treatment to predict disease response and outcome
• True validity will not be known until large, prospective trials are performed
Grazie per la Vostra Attenzione

PATHOPHYSIOLOGY

Blood Vessels

flow

diffusion

[Images of medical scans and diagrams related to blood vessels and flow/diffusion]